*

Making sense of logarithms in regressions:

The mystery of interpreting logs in regressions can be solved by going back to the lecture notes. There, we were given this crucial relationship:

(FACT 1)
For small changes in x,
$$\Delta \log x \approx \frac{\Delta x}{x}$$
 where \approx means "approximately equals"
(Likewise, for small changes in y, $\Delta \log y \approx \frac{\Delta y}{y}$)

What does $\frac{\Delta x}{x}$ mean? It is the **proportional** change in x. Example: if x = 20 and $\Delta x = 2$, I have $\frac{\Delta x}{x} = \frac{2}{20} = 0.1$, the proportional change in x. We prefer to think of these as **percentage** changes instead. How do I get from 0.1 to the percentage change? Multiply by 100%: $0.1 \times 100\% = 10\%$ change in x. How do I get from a percentage change back to the proportional change? Just divide by 100%: $\frac{10\%}{100\%} = 0.1$. None of this algebra is new to you, but keep it in mind. Formally:

(FACT 2)
$$\frac{\Delta x}{x} = \frac{percent \ change \ in \ x}{100}$$

Now consider the easy-to-interpret "levels" regression:

$$y = \widehat{\beta_0} + \widehat{\beta_1} x$$

We interpret this regression by saying, "ceteris paribus, when x changes by some amount Δx , y changes by $\widehat{\beta}_1(\Delta x)$. For example, if $\widehat{\beta}_1 = 2$ and x changes by 3, y changes by 2(3) = 6. That's the easy part. Formally, this result is:

*

(FACT 3)
$$\Delta y = \widehat{\beta}_1(\Delta x)$$

*

Let's use our FACTs to make sense of the "log" equation: $y = \widehat{\beta_0} + \widehat{\beta_1} log x$

We'll adapt FACT 3 just a little bit to this new equation: $\Delta y = \widehat{\beta_1}(\Delta \log x)$

All we did was account for the fact that logx is the independent variable instead of x. Now turning to FACT 1, we switch out $\Delta logx$ for $\frac{\Delta x}{x}$. This gives: $\Delta y = \widehat{\beta}_1 \left(\frac{\Delta x}{x}\right)$

Now use FACT 3 to replace $\frac{\Delta x}{x}$ with $\frac{percent change in x}{100}$. This gives:

$$\Delta y = \widehat{\beta_1}\left(\frac{percent\ change\ in\ x}{100}\right) \text{ or } \Delta y = \frac{1}{100}\widehat{\beta_1}(percent\ change\ in\ x)$$

This is the interpretation we wanted. Example: If $\widehat{\beta_1}$ is 2, and I change x by 10%, then y changes by 2(10/100) = 2(0.1) = 0.2.

* * * * * *

Now let's apply our FACTs to the log-linear regression: $logy = \widehat{\beta}_0 + \widehat{\beta}_1 x$

Again, adapt FACT 3 just a bit to get this new equation, just accounting for logy being the dependent variable instead of y: $\Delta logy = \hat{\beta}_1(\Delta x)$

Use FACT 1 to replace $\triangle logy$ with $\frac{\Delta y}{y}$, to get: $\frac{\Delta y}{y} = \widehat{\beta}_1(\Delta x)$

Use FACT 2 to replace $\frac{\Delta y}{y}$ with $\frac{percent \ change \ in \ y}{100}$ and you get: $\frac{percent \ change \ in \ y}{100} = \widehat{\beta_1}(\Delta x)$

Multiply both sides by 100 to get the interpretation we wanted:

percent change in $y = 100\widehat{\beta}_1(\Delta x)$

*

*

Example: If $\widehat{\beta_1}$ is 0.3, and I change x by 2, then y changes by 100(0.3)(2) percent = 60 percent.

Finally, we'll apply our FACTs to the log-log (elasticity) regression: $logy = \hat{\beta}_0 + \hat{\beta}_1 logx$

We follow the same procedure as the last two times. First, apply FACT 3: $\Delta logy = \widehat{\beta}_1(\Delta logx)$

Then, apply FACT 1: $\frac{\Delta y}{y} = \widehat{\beta}_1\left(\frac{\Delta x}{x}\right)$

*

*

After that, apply FACT 2: $\frac{percent \ change \ in \ y}{100} = \widehat{\beta_1} \left(\frac{percent \ change \ in \ x}{100} \right)$

Both sides are divided by 100, so let's simplify by cancelling them out:

percent change in $y = \widehat{\beta_1}(\text{percent change in } x)$

Example: If $\widehat{\beta_1}$ is 0.5, and I change x by 10 percent, then y changes by 0.5(10 percent) = 5 percent.

Recapping what we just did: we took three facts from lecture and combined them to derive, step-by-step, interpretations for all of the regressions involving logarithms. Let's use these interpretations to fill in the worksheet part of **Section Handout 2, part 3**:

We want to see how food consumption (y) measured in \$/year is related to household income (x) measured in \$/year. How would we interpret each of the following models?

Name	Functional Form	Interpretation in Words
linear ("constant returns")	$y = \beta_0 + \beta_1 x + u$	Ceteris paribus, when income increases by $\mathbf{z}_{,}$, food consumption increases by $\boldsymbol{\beta}_{1}(\mathbf{z})$.
log ("decreasing returns")	$y = \beta_0 + \beta_1 log x + u$	Ceteris paribus, when income increases by z percent, food consumption increases by $\frac{1}{100}\beta_1(z)$
log-linear ("increasing returns")	$logy = \beta_0 + \beta_1 x + u$	Ceteris paribus, when income increases by, food consumption increases by $100\beta_1(z)$ percent
log-log ("constant elasticity")	$logy = \beta_0 + \beta_1 logx + u$	Ceteris paribus, when income increases byz percent, food consumption increases by $\beta_1(z)$ percent

Let's do a real example with some numbers. Here I'm going to use different functional forms for regressions relating hourly wage (in \$) with years of education, using Wooldridge's data from example 2.4.

Name	Regression Results	Interpretation in Words
linear ("constant returns")	$\widehat{wage} = -0.90 + 0.54(education)$	When education increases by 1 year , predicted wage changes by 0.54(1) = \$0.54 .
log ("decreasing returns")	$\widehat{wage} = -7.46 + 5.33 log(education)$	When education increases by 10%, predicted wage increases by $\frac{1}{100}$ 5. 33(10) = \$0.533.
log-linear ("increasing returns")	log(wage) = 0.58 + 0.08(education)	When education increases by 1 year , predicted wage increases by 100(0.08)(1)% = 8% .
log-log ("constant elasticity")	log (wage) = -0.44 + 0.83 log(education)	When education increases by 10% , predicted wage increases by 0.83(10)% = 8.3% .